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Error Correction

Scheme:

Example of Additive White Gaussian Channel:

P(xout |xin) =
∏

i=bits

p(xout;i |xin;i )

p(x|y) ∼ exp(−s2(x − y)2/2)

Channel
is noisy ”black box” with only statistical information available

Encoding:
use redundancy to redistribute damaging effect of the noise

Decoding:
reconstruct most probable codeword by noisy (polluted) channel

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Low Density Parity Check Codes

N bits, M checks, L = N − M information bits
example: N = 10, M = 5, L = 5

2L codewords of 2N possible patterns

Parity check: Ĥv = c = 0
example:

Ĥ =


1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1


LDPC = graph (parity check matrix) is sparse

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Statistical Inference

σorig ⇒ x ⇒ σ

original

data
σorig ∈ C
codeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

magnetic field

statistical

inference

possible

preimage

σ ∈ C

Maximum Likelihood symbol Maximum-a-Posteriori

ML = arg max
σ
P(x|σ) MAPi = arg max

σi

∑
σ\σi

P(x|σ)

Exhaustive search is generally expensive: complexity ∼ 2N

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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P(x|σ)
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log-likelihood
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statistical
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preimage

σ ∈ C

σ = (σ1, · · · , σN), N finite, σi = ±1 (example)

Maximum Likelihood symbol Maximum-a-Posteriori
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Graphical models of Statistical Inference

Factorization (Forney ’01, Loeliger ’01)

P(σ|x) = Z−1
∏
a

fa(xa|σa)

Z(x) =
∑
σ

∏
a

fa(xa|σa))︸ ︷︷ ︸
partition function

fa ≥ 0

σab = σba = ±1

σ1 = (σ12, σ14, σ18)

σ2 = (σ12, σ13)

Example: Error-Correction (linear code, bipartite Tanner graph)

fi (hi |σi ) = exp(σihi )·
{

1, ∀α, β 3 i , σiα = σiβ

0, otherwise

fα(σα) = δ

∏
i∈α

σi , +1


hi - log-likelihoods

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Variational Method in Statistical Mechanics

P(σ) =
∏

a fa(σa)
Z , Z ≡

∑
σ

∏
a fa(σa)

Exact Variational Principe Kullback-Leibler ’51

F{b(σ)} = −
∑
σ

b(σ)
∑
a

fa(σa)−
∑
σ

b(σ) ln b(σ)

δF
δb(σ)

∣∣∣
b(σ)=p(σ)

= 0 under
∑
σ

b(σ) = 1

Variational Ansatz

Mean-Field: p(σ) ≈ b(σ) =
∏
i

bi (σi )

Belief Propagation:

p(σ) ≈ b(σ) =

∏
a ba(σa)∏

(a,b) bab(σab)
(exact on a tree)

ba(σa) =
∑
σ\σa

b(σ), bab(σab) =
∑

σ\σab

b(σ)

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Bethe free energy: variational approach
(Yedidia,Freeman,Weiss ’01 - inspired by Bethe ’35, Peierls ’36)

F = −
∑

a

∑
σa

ba(σa) ln fa(σa)︸ ︷︷ ︸
self-energy

+
∑

a

∑
σa

ba(σa) ln ba(σa)−
∑
(a,c)

bac (σac ) ln bac (σac )

︸ ︷︷ ︸
configurational entropy

∀ a; c ∈ a :
∑

σa
ba(σa) = 1, bac (σac ) =

∑
σa\σac

ba(σa)

⇒Belief-Propagation Equations: δF
δb

∣∣
constr.

= 0

MAP≈BP=Belief-Propagation (Bethe-Pieirls): iterative ⇒ Gallager ’61; MacKay ’98

Exact on a tree Derivation Sketch

Trading optimality for reduction in complexity: ∼ 2L →∼ L

BP = solving equations on the graph:

ηαj = hj +
j∈β∑
β 6=α

tanh−1

(
i∈β∏
i 6=j

tanh ηβi

)
⇐ LDPC representation

Message Passing = iterative BP

Convergence of MP to minimum of Bethe Free energy can be enforced

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Linear Programming version of Belief Propagation

In the limit of large SNR, ln fa → ±∞: BP→LP

Minimize F ≈ E = −
∑
a

∑
σa

ba(σa) ln fa(σa) = self energy

under set of linear constraints

LP decoding of LDPC codes Feldman, Wainwright, Karger ’03

ML can be restated as an LP over a codeword polytope

LP decoding is a “local codewords” relaxation of LP-ML

Codeword convergence certificate

Discrete and Nice for Analysis

Large polytope {bα, bi} ⇒ Small polytope {bi}

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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BP does not account for Loops

Questions:

Is BP just a heuristic in a loopy case?

Why does it (often) work so well?

Does exact inference allow an expression in terms of BP?

Can one correct BP systematically?

Previous Considerations:

Rizzo, Montanari ’05 - Corrections to BP approximation

Parisi, Slanina ’05 - BP as a saddle-point + corrections

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Chertkov,Chernyak ’06

Local Gauge, G , Transformations

a

b c

e

d

i
f g

fa(σa = (σab, · · · )) →
∑

σ′
ab

Gab

(
σab, σ′ab

)
fa(σ′ab, · · · )

∑
σab

Gab(σab, σ′)Gba(σab, σ′′) = δ(σ′, σ′′)

The partition function is invariant under any G -gauge!

Z =
∑
σ

∏
a

fa (σa) =
∑
σ

∏
a

(∑
σ′a

fa(σ
′
a)
∏
b∈a

Gab(σab, σ
′
ab)

)
︸ ︷︷ ︸

graphical trace

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauge Transformation: Binary Representation

Z =
∑

σ

∏
a fa(σa) =

∑
σ′
∏

a fa(σa)
∏

bc
1+σbcσcb

2
, σbc 6= σcb

The binary trick

1 + πσ = exp(ση+πχ)
cosh(η+χ)

(
1 + (tanh(η + χ)− σ)(tanh(η + χ)− π) cosh2(η + χ)

)
f̃a(σa) = fa(σa)

∏
b∈a exp(ηabσab)

Vbc (σbc , σcb) = 1 + (tanh(ηbc + ηcb)− σbc ) (tanh(ηbc + ηcb)− σcb) cosh2(ηbc + ηcb)

Graph Coloring

Z = (
∏
bc

2 cosh(ηbc + ηcb))
−1
∑
σ′

∏
a

f̃a(σa) ·
∏
bc

Vbc

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Graph Coloring

Z = (
∏
bc

2 cosh(ηbc + ηcb))
−1
∑
σ′

∏
a

f̃a(σa) ·
∏
bc

Vbc︸ ︷︷ ︸
1+

∑
colored edges

∗···∗···∗···

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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ground state

+
∑

all possible colorings of the graph

· · ·

︸ ︷︷ ︸
excited states

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauges and BP

Partition function in the colored representation

Z = (
∏
bc

2 cosh(ηbc + ηcb))−1
∑
σ′

∏
a

f̃a
∏
bc

Vbc , f̃a(σa ; ηa) = fa(σa)
∏
b∈a

exp(ηabσab)

Vbc (σbc , σcb) = 1 + (tanh(ηbc + ηcb) − σbc ) (tanh(ηbc + ηcb) − σcb) cosh2(ηbc + ηcb)

Fixing the gauges ⇒ BP equations!!

∑
σa

(
tanh(η

(bp)
ab

+ η
(bp)
ba

) − σab

)
f̃a(σa ; ηa) = 0 ⇒ η

bp
αj = hj +

j∈β∑
β 6=α

tanh−1(

i∈β∏
i 6=j

tanh η
bp
βi

)

︸ ︷︷ ︸
LDPC case

Color Principe: no loose ends∏
(bc)

Vbc = 1 +
∑

colored edges
∗ · · · ∗ · · · ∗ · · ·

Variational Principe:

∏
(bc)

Vbc → 1, Z → Z0,
δZ0
δηab

∣∣∣∣∣
η(bp)

= 0

Z0 = (
∏

bc 2 cosh(ηbc + ηcb))−1 ∑
σ

∏
a f̃a(σa)

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Loop Series: Chertkov,Chernyak ’06

Exact (!!) expression in terms of BP

Z =
∑
σσ

∏
a

fa(σa) = Z0

(
1 +

∑
C

r(C)

)

r(C) =

∏
a∈C

µa∏
(ab)∈C

(1−m2
ab)

=
∏
a∈C

µ̃a

C ∈ Generalized Loops = Loops without loose ends

mab =

∫
dσab

(bp)
a (σa)σab

µa =

∫
dσab

(bp)
a (σa)

∏
b∈a,C

(σab −mab)

The Loop Series is finite

All terms in the series are
calculated within BP

BP is exact on a tree

BP is a Gauge fixing condition.
Other choices of Gauges would
lead to different representation.
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Features of the Loop Calculus

Z = Z0(1 +
∑

C rC ), rC =
∏

a∈C µ̃a

Bethe Free Energy is related to the “ground state” term in the partition
function: F (b∗(η)) = − ln Z0(η), where

b∗a (σa) =
fa(σa) exp(

∑
b∈a ηabσab)∑

σa
fa(σa) exp(

∑
b∈a ηabσab)

, b∗ab(σab) = exp((ηab+ηba)σab)
2 cosh(ηab+ηba)

Extrema of F (b) are in one-to-one correspondence with extrema of Z0(η).

Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.

−1 ≤ rC , µ̃a ≤ 1. The tasks of finding all µ̃a (over the graph) and rC for a given
loop are (computationally) not difficult. All that suggests simple heuristic for
finding loops with large rC .

Linear Programming limit of the Loop Calculus is well defined.

Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at an
edge, is expressed as modified Loop Series.

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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1 Introduction
Main Example: Error Correction
Statistical Inference
Graphical Models
Bethe Free Energy and Belief Propagation (BP)

2 Loop Calculus
Gauge Transformations and BP
Loop Series in terms of BP
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Analysis and Improvement of LDPC-BP/LP Decoding
Long Correlations and Loops in Statistical Mechanics

4 Conclusions
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If BP/LP fails while ML/MAP would not
... one needs to account for Loops

How many loops are critical to recover from the failure?

Will accounting for a single most important loop be sufficient?

How long is the critical loop?

Will it be difficult to find the critical loop?

If there are many ... how are the critical loops distributed over
scales?
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Error-Floor

T. Richardson, Allerton ’03

BER vs SNR = measure of
performance

Waterfall ↔ Error-floor

ML and BP/LP are generally
different at s2 = Es/N0 →∞,

FERML ∼ exp(−dMLs2/2) vs

FERsub ∼ exp(−dsubs2/2) where

dML ≥ dsub

Monte-Carlo is useless at
FER . 10−8

Need an efficient method to
analyze error-floor

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Pseudo-codewords and Instantons

Error-floor is caused by Pseudo-codewords:

Wiberg ’96; Forney et.al’99; Frey et.al ’01;

Richardson ’03; Vontobel, Koetter ’04-’06

Instanton = optimal conf of the noise

BER =

∫
d(noise) WEIGHT (noise)

BER ∼ WEIGHT

(
optimal conf
of the noise

)
optimal conf
of the noise

=
Point at the ES
closest to ”0”

Instantons are decoded to Pseudo-Codewords

Instanton-amoeba

= optimization algorithm
Stepanov, et.al ’04,’05

Stepanov, Chertkov ’06

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics



Introduction
Loop Calculus

Applications
Conclusions

Analysis and Improvement of LDPC-BP/LP Decoding
Long Correlations and Loops in Statistical Mechanics

Loop Calculus & Pseudo-Codeword Analysis

Single loop truncation

Z = Z0(1 +
∑

C rC ) ≈ Z0(1 + r(Γ))

Synthesis of Pseudo-Codeword Search Algorithm
(Chertkov, Stepanov ’06) & Loop Calculus

Consider pseudo-codewords one after other

For an individual pseudo-codeword/instanton identify a critical
loop, Γ, giving major contribution to the loop series.

Hint: look for single connected loops and use local ”triad”

contributions as a tester: r(Γ)=
∏

α∈Γ µ̃
(bp)
α

Proof-of-Concept test [(155, 64, 20) code over AWGN]

∀ pseudo-codewords with 16.4037 < d < 20 (∼ 200 found)
there always exists a simple single-connected critical loop(s)
with r(Γ) ∼ 1.

Pseudo-codewords with the lowest d show r(Γ) = 1

Invariant with respect to other choices of the original codeword

0 50 100 150
−1

0

1

bit label, i=1,...,155

A
−

po
st

er
io

ri 
lo

g−
lik

el
ih

oo
ds

Instanton #1, d
eff

=16.4037

Bigger Set

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Extended Variational Principe & Loop-Corrected BP
Bare BP Variational Principe:

δZ0
δηab

∣∣∣∣∣
η(bp)

= 0, Z0 = (
∏

bc 2 cosh(ηbc + ηcb))−1 ∑
σ

∏
a Pa(σa)

∣∣∣
η(bp)

New choice of Gauges guided by the knowledge of the critical loop Γ

δ exp(−F)
δηab

∣∣∣
ηeff

=0, F ≡ − ln(Z0 + ZΓ)

BP-equations are modified along the critical loop Γ
∑

σa (tanh(ηab+ηba)−σab)Pa(σa)∑
σa

Pa(σa)

∣∣∣∣
ηeff

=

∏
d∈Γ µd ;Γ∏

(a′b′)∈Γ
(1−(m

(∗)

a′b′
)2)

δma→b;Γ

∣∣∣∣∣∣
ηeff

6= 0 [along Γ]

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

2. If BP fails find the most relevant loop Γ that corresponds to the maximal |rΓ|. Triad search is helping.

3. Solve the modified-BP equations for the given Γ. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved Γ-loop selection.

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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∣∣∣
η(bp)

New choice of Gauges guided by the knowledge of the critical loop Γ

δ exp(−F)
δηab

∣∣∣
ηeff

=0, F ≡ − ln(Z0 + ZΓ)

BP-equations are modified along the critical loop Γ
∑

σa (tanh(ηab+ηba)−σab)Pa(σa)∑
σa

Pa(σa)

∣∣∣∣
ηeff

=

∏
d∈Γ µd ;Γ∏

(a′b′)∈Γ
(1−(m

(∗)

a′b′
)2)

δma→b;Γ

∣∣∣∣∣∣
ηeff

6= 0 [along Γ]

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

2. If BP fails find the most relevant loop Γ that corresponds to the maximal |rΓ|. Triad search is helping.

3. Solve the modified-BP equations for the given Γ. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved Γ-loop selection.
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LP-erasure = simple heuristics
1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).

2. If LP fails, find the most relevant loop Γ that corresponds to the maximal amplitude r(Γ).

3. Modify the log-likelihoods along the loop Γ introducing a shift towards zero, i.e. introduce a complete
or partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if the
modified LP succeeds.

4. Return to Step 2 with an improved selection principle for the critical loop.

(155, 64, 20) Test

IT WORKS!
All troublemakers (∼ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithm
method were successfully corrected by the LP-erasure algorithm.

Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).

General Conjecture:

Loop-erasure algorithm is capable of reducing the error-floor

Bottleneck is in finding the critical loop

Local adjustment of the algorithm, anywhere along the critical loop, in the spirit
of the Facet Guessing (Dimakis, Wainwright ’06), may be sufficient
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Dilute Gas of Loops: Z = Z0(1 +
∑

C rC ) ≈ Z0 ·
∏

Csc=single connected

(1 + rsc)

Applies to
Lattice problems in high spatial dimensions

Large Erdös-Renyi problems (random graphs with controlled connectivity degree)

The approximation allows an easy multi-scale re-summation

In the para-magnetic phase and h = 0: the only solution of BP is a trivial one

η = 0, Z0 → 1, and the Loop Series is reduced to the high-temperature

expansion [Domb, Fisher, et al ’58-’90]

Ising model in the factor graph terms

Z =
∑
σ

∏
α=(i,j)∈X

exp
(
Jij σi σj

)
=

∑
σ

∏
a∈{i}∪{α}

fa(σa)

fi (σi ) =

{
exp(hi σi ), σiα =σiβ =σi ∀α, β 3 i

0, otherwise;

fα
(
σα = (σαi , σαj )

)
= exp

(
Jij σαi σαj

)

Loop Series trivially pass the common
”loop” tests (from Rizzo, Montanari ’05)

Evaluation of the critical temperature in the
constant exchange, zero field Ising model

Leading 1/N corrections to the Free Energy of the
Viana-Bray model in the vicinity of the critical
point (glass transition)
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Results

BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.

Exact Marginal probability allows explicit Loop Series expression in
terms of a solution of the Belief Propagation equations.

Truncation and/or Re-summation of the Loop Series provide
hierarchy of systematically improvable approximations/algorithms.
Standard BP/LP is a first member in the hierarchy.

Local example (truncation). Finding a critical loop, or a small
number of critical loops, can be algorithmically sufficient for drastic
improvement of BP decoding in the error-floor domain.

Multi-scale example of stat-mech problems with long correlations.
Re-summation is needed to improve upon BP.
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Future Challenges
Better Algorithms: Loop Series Truncation/Resummation

Generalizations. q-ary and continuous alphabets. Quantum spins, Quantum
error-correction.

Loop calculus based analysis of graph ensembles, e.g. understanding and
improving the cavity method [Mézard, Parisi ’85-’03]

Extending the list of Loop Calculus Applications, e.g. SAT and cryptography

Non-BP gauges, e.g. for stat problems on regular and irregular lattices

Relation to graph ζ-functions [Koetter, Li, Vontobel, Walker ’05]

Other complementary developments, e.g. wrt Algorithms:

Improving BP [Survey Propagation = Mézard et.al ’02; Generalized BP =
Yedidia et.al ’01]

Correcting for Loops in BP [Montanarri, Rizzo ’05; Parisi, Slanina ’05]

Accelerating convergence of bare BP-LDPC [Stepanov, Chertkov ’06]

Reducing LP-LDPC complexity [Taghavi, Siegel ’06; Vontobel, Koetter ’06;
Chertkov, Stepanov ’07]

Improving LP-LDPC [Dimakis, Wainwright ’06]
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Yedidia et.al ’01]

Correcting for Loops in BP [Montanarri, Rizzo ’05; Parisi, Slanina ’05]

Accelerating convergence of bare BP-LDPC [Stepanov, Chertkov ’06]

Reducing LP-LDPC complexity [Taghavi, Siegel ’06; Vontobel, Koetter ’06;
Chertkov, Stepanov ’07]

Improving LP-LDPC [Dimakis, Wainwright ’06]

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics



Introduction
Loop Calculus

Applications
Conclusions

Results
Path Forward
Bibliography

Future Challenges
Better Algorithms: Loop Series Truncation/Resummation

Generalizations. q-ary and continuous alphabets. Quantum spins, Quantum
error-correction.

Loop calculus based analysis of graph ensembles, e.g. understanding and
improving the cavity method [Mézard, Parisi ’85-’03]
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BP is Exact on a Tree (LDPC)
Pseudo-Codewords & Loops

Z (h) =
∑
σ

M∏
α=1

δ

(∏
i∈α

σi , 1

)
exp

(
N∑

i=1
hiσi

)
hi is a log-likelihood at a bit (outcome of the channel)

Z±jα(h>) ≡
σj=±1∑

σ>

∏
β>

δ

(∏
i∈β

σi , 1

)
exp

(∑
i>

hiσi

)

Z±jα = exp(±hj)

j∈β∏
β 6=α

1

2

i∈β∏
i 6=j

(Z+
iβ + Z−iβ)±

i∈β∏
i 6=j

(Z+
iβ − Z−iβ)


ηjα ≡

1

2
ln

(
Z+

jα

Z−jα

)
, ηjα = hj +

j∈β∑
β 6=α

tanh−1

i∈β∏
i 6=j

tanh ηiβ


Bethe Free Energy
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BP is Exact on a Tree (LDPC)
Pseudo-Codewords & Loops
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